MATH 521A: Abstract Algebra
Exam 1 Solutions

1. Let p € N be irreducible, with p > 4. Use the Division Algorithm to prove that p is of
the form 6k + 1 or 6k + 5 for some integer k.

Apply the division algorithm to p, 6 to get integers k,r with p = 6k +r and 0 < r < 6.
If r = 0, then 6|p, which is impossible as p is irreducible. If r = 2, then p = 2(3k + 1),
so 2|p, which is impossible as p is irreducible with p > 4. If r = 3, then p = 3(2k + 1),
so 3|p, which is again impossible. Lastly, if » = 4, then p = 2(3k + 2), so again 2|p,
which is again impossible.

2. Use the extended Euclidean Algorithm to find ged(119,175) and to find z,y € Z with
1192 + 175y = ged (119, 175).

Step 1: 175 =1-119 4+ 56. Step 2: 119 =2-56+ 7. Now 56 = 7 - 8, so we conclude
that ged(119,175) = 7. Step 3: 7=119—-2-56. Step4: 7=119—-2-(175—-1-119) =
3-119 —2-175. Hence we have z = 3,y = —2.

3. Apply the Miller-Rabin test to n = 63 and a = 2, and interpret the result.

We have n—1 = 62 = 2'-31,s0 s = 1 and d = 31. Hence we calculate 23! (mod 63). We
can do this by hand: 23! = (20)°2! and 2 =64 =1 (mod 63). Hence 23! =1°-2 =2
(mod 63). Since this is neither 1 nor 62, we conclude that a = 2 is a witness to n being
composite.

4. Let a,b € N with ged(a,b) = 1. Without using the FTA, prove that ged(a,b?) = 1.

Direct Solution: Set d = ged(a, b?), and set f = ged(d,b). We have f|b and f|a (since
f|d and d|a), so f|ged(a,b). But ged(a,b) =1, so f = 1. Now, we apply Theorem 1.4
[which states that if d|x -y and ged(d, x) = 1, then d|y] with x = y = b. Since f = 1,
we conclude that d|b. But also d|a, so d|ged(a,b), so d = 1.

Alternate Solution: Apply Theorem 1.2 to get integers u, v with au+bv = ged(a, b) = 1.
We square both sides to get 1 = a?u? + 2aubv + b*v? = a(a*u® + 2ubv) + b*(v?). Since
a*u? + 2ubv,v* € Z, we have 1 €PLC(a, b?). Since no positive integer is less than 1, in
fact 1 is the minimal element of PLC(a,b?), which is ged(a, b?) by Thm 1.2 again.

5. Prove that S = NU {r} is well-ordered.

The usual order is NOT recommended, as that leads to many cases. Recommended is
an order which puts 7 at one end, like m <1 <2 <3< ---. Now,let T CS. If T
contains m, then 7 is the minimal element of T" by the way we built the order <. If T’
does not contain 7, then 7' C N, and < agrees with the usual order < on N, so 7" has
a minimal element since N is well-ordered by <.



6. Prove the following variant of the division algorithm: Let a,b be integers with b > 0.
then there exist (not necessarily unique) integers ¢, r such that a = bg + r and —1 <
r<b-—2.

Set S ={a—bx:x €Z,a—br>—1}. Step 1: We prove S # (). Take x = —|al, and
calculate a — bx = a + bla] > 0. Hence a — bx € S. Step 2: S C {—1} UNy, which
we proved was well-ordered (by the usual order) in the first homework. Hence, there
is some minimal element r in S. Since r € S, we have r > —1. Step 3: We prove that
r < b—2. We argue by contradiction; if instead » > b — 1, then r —b =a — b(q¢ + 1)
would be a smaller element of S, which is impossible.

7. Let a,b,c,d € Z with ale, ble, and ged(a,b) = d. Without using the FTA, prove that
ablcd.

Direct Solution: For some integers a’, ', we have a = da’,b = db/, since d = ged(a, b).
In fact ged(a’,b') =1 (else d would be larger). Since alc, there is some integer f with
c=af =dd f. Since b|c, there is some integer g with db'g = bg = da’f. Cancelling, we
getb'g=d'f. Sob'|d f, but ged(V,a’) = 1, so by Theorem 1.4 we must have b'| f. Hence
there is some integer k with f = b'k. We now have cd = (af)d = a(b'kd) = (ab)k, so
ablcd.

Alternate Solution: Apply Theorem 1.2 to get integers u, v with au+bv = ged(a,b) = d.
Now, since a|c, there is some integer e with ¢ = ae. Since b|c, there is some integer f
with ¢ = bf. We now multiply au+bv = d on both sides by ¢ to get cau-+cbv = cd, then
substitute twice to get (bf)au + (ae)bv = cd. Rearranging, we get ab(fu + ev) = cd.
Since fu+ ev € Z, in fact ab|cd.

8. Let a,b,c € Z with ab = ¢ and ged(a,b) = 1. Prove that a,b are perfect squares.

Apply the FTA. Let py,...,pr be all the positive primes dividing any of a,b,c. We
have a;,b;,¢; € Ny with a = [[pf", b = Hp?",c = [Ip;", where all the products are
from i = 1 to k. The relationship ab = ¢® gives us k equations: a; + b; = 2¢;, for
1 <i < k. Since ged(a,b) = 1, then for each i € [1, k], we must have either a; = 0 or
b; = 0 (else p; would be a common divisor of a,b). Hence, for each i € [1, k|, either
a; = 2¢; or b; = 2¢;. Hence all of the exponents a; and b; are even, which means that

a,b are both perfect squares.



